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Abstract

The impacts of climate change are intensifying existing vulnerabil-
ities and disparities within urban communities around the globe,
as extreme weather events, including floods and heatwaves, are
becoming more frequent and severe, disproportionately affecting
low-income and underrepresented groups. Tackling these increas-
ing challenges requires novel approaches that integrate expertise
across multiple domains, including computer science, engineering,
climate science, and public health. Urban computing can play a piv-
otal role in these efforts by integrating data from multiple sources
to support decision-making and provide actionable insights into
weather patterns, infrastructure weaknesses, and population vulner-
abilities. However, the capacity to leverage technological advance-
ments varies significantly between the Global South and Global
North. In this paper, we present two multiyear, multidisciplinary
projects situated in Chicago, USA and Niterói, Brazil, highlighting
the opportunities and limitations of urban computing in these di-
verse contexts. Reflecting on our experiences, we then discuss the
essential requirements, as well as existing gaps, for visual analyt-
ics tools that facilitate the understanding and mitigation of climate-
related risks in urban environments.

Index Terms: Urban computing, visual analytics, climate justice.

1 Introduction

With growing economic and environmental pressures, cities are ac-
tively seeking innovative solutions to address current and future
challenges. Over the past decade, urban sensing initiatives and
increasingly more capable computing infrastructures have created
opportunities for experts from diverse domains, such as engineer-
ing, public health, urban planning, and climate science, to tackle
pressing problems by leveraging data and analytics. Such an urban
computing approach [39], in which urban data and computation are
leveraged to tackle urban problems, has been instrumental in pro-
viding solutions for better disaster management [1], understanding
air and noise pollution patterns [3], improving mobility and acces-
sibility [19], enhancing city management [22], and elevating the
overall quality of urban life [23].

Urban computing, however, presents numerous technological
and research challenges spanning the entire data lifecycle: from
data acquisition and collection (e.g., how to design low-cost but re-
liable sensors [9], find and organize urban datasets [7]) to visual
analytics (e.g., how to visualize multivariate urban data [29], auto-
matically extract patterns [15]). While significant strides have been
made in recent years in democratizing access to some of these tech-
nological frameworks, there is still a considerable gap with respect
to the accessibility to these advancements across urban areas. As
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an inherently multidisciplinary topic, urban computing brings to-
gether experts in computing as well as urban problems and, as many
topics of such a type, outcomes are heavily influenced by domain
differences and priorities, leading to siloed and one-off projects
that are rarely translated to other contexts. Adding to that, social,
economic, political, and technological contexts vary from region
to region and at various levels: across neighborhoods of the same
city [11], among cities in the same country [2], and between coun-
tries globally [4].

This paper then proposes a reflection on these challenges, using
two multi-year multidisciplinary projects as grounding examples,
each leveraging urban computing to tackle different aspects of cli-
mate and environmental justice. The projects are situated in Niterói,
Brazil and Chicago, USA – large cities in different hemispheres that
share similar challenges, such as heat waves and flooding, yet ex-
hibit markedly distinct realities. In Niterói, our team has been work-
ing with public officials and climate scientists to leverage heteroge-
neous urban data to assist the municipal government in analyzing
previous rainfalls and their impacts (such as landslides and floods),
ultimately enabling data-driven decision-making. In Chicago, our
team has been working with disproportionately impacted communi-
ties, including low-income communities and communities of color,
as well as with climate scientists in creating tools that highlight
and explain environmental and climate injustices. In common, both
projects leverage visualization and visual analytics as a means to
facilitate collaboration across various domains and stakeholders. In
this paper, we aim to share our insights from these two projects, re-
flecting upon the stakeholders’ profiles, requirements, urban com-
puting strategies adopted, limitations, and lessons learned in each
scenario. By engaging in this discussion, we hope to provide a
pathway to enhance the understanding of how urban computing can
contribute to developing healthy and equitable cities.

In Section 2, we provide a brief overview of core concepts un-
derlying both projects: urban computing, and climate and environ-
mental justice. In Section 3, we discuss both projects, as well as
their urban computing requirements, particularly focusing on visual
analytics. In Section 4, we provide a discussion on the technical
limitations we faced in both projects.

2 Background

In this section, we provide an overview of urban computing, partic-
ularly focusing on its connection to visualization and visual analyt-
ics. We then examine climate and environmental justice and their
relevance to the two previously mentioned projects.

2.1 Urban Computing

Although the concept of urban computing originated in works from
the 2000s [21], Zheng et al. were the first to propose a general urban
computing framework [39]. In their framework, the components
of urban computing encompass the entire data lifecycle. More-
over, unlike more targeted systems that are based on a single data
type and task, urban data is heterogeneous, spanning, for exam-
ple, collections of images [25], timeseries [26], and geo-referenced
data [20]. Also, tasks can be accomplished by combining differ-
ent data, techniques, and components within an urban computing
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Figure 1: Examples of tools developed as part of the two projects. For Niterói, we have developed RiskVis [6] and PluvWeb. For Chicago, we
have developed (c) the Proximity-to-Hazard dashboard [5] and (d) the E-Just toolkit [33].

framework [39]. Next, we will briefly elaborate on these compo-
nents and revisit them when discussing the projects.
C1 Collection, generation & discovery. Urban data can be gen-

erated through different means, such as sensing [3], crowdsourc-
ing [31], or simulations [37]. Given the widespread popularity of
open data portals, data discovery also plays an important role in
urban computing [8].
C2 Curation & transformation. With the growth in the avail-

ability of urban data, organizing and maintaining datasets is also
an important component of urban computing. This also includes
cleaning [38] and creating appropriate indices [16] to organize and
facilitate search by different users and stakeholders.
C3 Management. The complexity and size of urban data require

the use of non-trivial approaches to enable scalability and support
interactive exploratory analyses [16].
C4 Analysis & modeling. Due to the scale of the data, both the

size of individual datasets and the number of datasets, manual ex-
ploration is often not practical. Recent approaches in urban com-
puting use machine learning [35] and computational topology [24]
to identify interesting features and events in one dataset [15], or
relationships between datasets [10].
C5 Visualization. Lastly, visualization plays a crucial role in mak-

ing sense of complex urban data. Effective techniques enable re-
searchers and domain experts to understand trends and anomalies
within the data, considering 2D [40, 14] and 3D data [27].

2.2 Climate and Environmental Justice

The topics of climate and environmental justice are also integral to
both projects. The social movements that emerged in the 1960s,
along with the increased frequency of natural disasters, has under-
scored the need for climate and environmental justice in urban ar-
eas. These concepts consider that many of those most severely im-
pacted are vulnerable minorities who have had minimal influence
over the processes and activities that contribute to their adverse
circumstances, and on the related decision-making. In essence,
climate change and environmental problems are closely linked to
social, ethnic, political, and economic issues. Our primary objec-
tive is to present two research initiatives tackling climate and en-
vironmental justice through a participatory approach that involves
interaction and collaboration among diverse stakeholders. These
projects are grounded in the urban computing concepts discussed
earlier. Although we discuss the projects in broad terms, we cite
research articles that provide more detailed descriptions of some of
the outcomes.

3 Examples of Urban Computing Projects

In this section, we provide two examples of urban computing
projects, each with different requirements and limitations.
3.1 Niterói: Flooding & Landslides Disaster Management

Niterói, a medium-sized city in Brazil, is situated in the mountain-
ous regions of Rio de Janeiro. The city frequently endures climate-
related disasters, such as landslides and floods [34]. In 2019, the
city launched a call for research projects that proposed to develop

solutions focused on sustainability. The project described next was
one of the funded projects and aimed at developing solutions to aid
the city’s Civil Defense Department in analyzing rainfall data, as
well as related events, such as landslides and floods. Some of the
components of the project build on top of our previous efforts lever-
aging weather simulations for disaster management [13, 12, 6].

Throughout the three-year project, we held several meetings
with professionals from the city’s department. In this process,
we were able to design and implement our own urban comput-
ing framework, leveraging both off-the-shelf and custom-built tech-
nologies for each one of the C1 - C5 components. During the initial
meetings, we began collecting and curating a set of heterogeneous
datasets. For C1 , we then collected observed data (e.g., accumu-
lated rain volumes, landslide and flood occurrences, weather warn-
ings and alert messages, traffic camera videos), as well as sociode-
mographic data. For C2 , the project required the consolidation of
the spatial and temporal data. To achieve this, data transforma-
tions included the extraction of frames from the video data, as well
as spatiotemporal computations, such as computing accumulated
rainfall volumes. For C3 , we made use of spatial indices to support
interactive data exploration, including the comparison of spatial and
temporal patterns. Additionally, we dedicated significant effort to
ensure the accurate integration of all relevant data. In specific, we
leveraged our previous work [13, 12, 6] that proposed a data integra-
tion framework that takes data from multiple sources with different
mathematical descriptions, dimensions, and resolutions and creates
a data-enriched triangle mesh that can be used for both visualization
and numerical simulation applications.

In our early communications with city officials, it was made clear
to us that the dataset with flood occurrences was not as comprehen-
sive as desired, with many spatial and temporal gaps. As part of C4 ,
we then decided to leverage the video data to train a computer vi-
sion model to detect flood hotspots. Another analytical component
was the ability to compute response route options for emergency
vehicles, taking into account traffic and flood data. For C5 , data
and analyses were made available through a visual interface that
used well-known visual designs, such as heatmaps and line charts.
3.2 Chicago: Weather & Climate Analysis

Over the past few years, we have partnered with a number of coali-
tion groups in Chicago to develop dashboard-like visualization in-
terfaces to investigate climate and environmental justice issues [33].
These communities are largely Latino and African American and
have per capita income levels that are lower than Chicago’s aver-
age. Due to the industrial zone land use classification and proxim-
ity to major highways, the number of facilities in the surrounding
industrial corridors is increasing.

As part of these ongoing projects, we employed a participatory
approach [5], in which many of the problems and data included in
our outcomes were identified and suggested by community mem-
bers. Similar to the Niterói project, C1 relied on crowdsourced,
observed and sociodemographic data. For crowdsourced data, we
relied on OpenStreetMap for building and street network infor-
mation. For observed data, for example, we included data from



smart city initiatives in Chicago (e.g., Array of Things) as well as
ECOSTRESS and MODIS space sensors describing temperature
and air pollution [32]. For sociodemographic data, we included
average income, race, and ethnicity information made available by
the US Census. For simulated data, our tools incorporated weather
simulation data from WRF-Chem. We also included toxic release
inventory facilities made available by the US EPA.

For C2 , we transformed and filtered space sensors data from
GeoTIFF to NetCDF format, and filtered WRF-Chem data to in-
clude only variables of interest. Observed data were aggregated
hourly, and sociodemographic data was structured according to
each spatial unit. Additionally, we aggregated data by region,
time window, and variable to facilitate easier comparisons across
datasets. For C3 , processed files are stored as JSON files and made
available through a server to the web client.

For C4 , we aimed to support different tasks, such as computing
the correlation between variables across spatial units, comparing
observed and simulated values over time, and calculating forecast
verification metrics. Lastly, for C5 , given the need to support users
across domains and visual literacy levels, we designed a grammar-
based framework that enabled us to quickly iterate over different
visualization designs. We can customize the interface to align with
the data and the user profile. This process involves selecting and
organizing components such as maps and charts. Each map layer
is created based on the data and specified grammar, representing
grids, regions, spatial points, and 3D buildings. Additionally, the
grammar defines the interactions for each component, allowing for
flexible and tailored visual analyses of specific areas or elements
according to the data and user requirements. Using the custom
grammar, we can create individual and juxtaposed views for spa-
tial comparisons and statistical analyses. These analyses focused
on specific regions or time windows, usually when the overview
map indicated relevant patterns.

4 Discussion & Conclusion

Through our experience in developing visual analytics tools that
integrate urban computing components and leverage extensive data
from two different locations, we were able to better understand lim-
itations, not only from a research perspective but also a practical
one. First, we share our perspectives considering each urban com-
puting component. Then, we outline potential future work.

In C1 , collecting data from multiple sources demands signifi-
cant effort, especially since many datasets, such as crowdsourced
or sensor data, are continuously updated. This requires either man-
ually downloading up-to-date data or implementing streaming ca-
pabilities and API connections with appropriate data sources. In
our experience, there is a considerable barrier to leveraging sensing
data, in particular. In Niterói, even though the city had access to
a number of cameras, creating appropriate data pipelines to extract
and process data for the analytical process was a major hurdle. We
faced similar challenges when leveraging simulation data, which
requires a set of complex steps to format data for visualization.

In C2 , we have observed two challenges. First, data size can
make spatial joins prohibitively expensive, particularly when ag-
gregating over street networks. Second, changes in requirements,
either arising from new interviews with experts or data limitations,
require modifying already existing data workflows. Given the com-
plexity of some of these workflows, spread over potentially multiple
computational notebooks, adjustments can be time-consuming and
prone to errors. In C3 , despite significant advancements in new in-
dices and techniques for spatial data in recent years, most of these
innovations remain confined to tabular data. Considering the com-
plexity of urban data and tasks, there is still a gap in addressing
advanced data types, such as images, networks, and geometries.

In C4 , given urban computing’s societal implications, ensur-
ing the transparency, interpretability, and accuracy of data-driven
methodologies is a fundamental concern. This has also been high-
lighted in previous works, particularly with respect to environmen-
tal justice [18]. In the Niterói project, where we had to train a new
flood detection computer vision model, there were concerns with
the downstream reliability of the approach, particularly considering
different weather conditions.

In C5 , challenges centered on maintaining a connection between
data and visualizations. Given data and workflow complexities,
early commitments to certain visualization designs were common.
Moreover, the creation of visual analytics tools for urban comput-
ing requires the integration of multiple components. Changes in
requirements often entail substantial redevelopment efforts.
Takeaways & research opportunities. As outlined in previous
surveys [35, 14, 17, 27], urban computing presents numerous re-
search opportunities for visualization. Our experience with these
two projects (as well as previous ones) reveals that a pressing chal-
lenge remains in moving beyond siloed efforts and ensuring inter-
operability of outcomes. As of now, properly setting up all com-
ponents of an urban computing data pipeline for a visual analyt-
ics tool requires considerable effort, given data and task complex-
ities. This leads to several consequences, including the creation of
monolithic prototypes and poor reusability of outcomes. Most im-
portantly, there should be a greater focus on moving beyond one-
off collaborations and ensuring that research outcomes from one
project can be easily leveraged by others. While there have been
initial efforts in this direction (such as Urbanity [36] or our own
the Urban Toolkit [28]), the status quo is one where visual analyt-
ics tools and applications are still largely being built from scratch,
with little to no concerns for reusability or interoperability. We
argue for stronger efforts to enhance interoperability, allowing out-
comes to be easily utilized across the urban computing pipeline and
across projects. Visual analytics researchers are uniquely qualified
for such endeavors, as the tools and applications developed by the
community often require a comprehensive understanding of the en-
tire pipeline.

On top of that, we also see opportunities to more inclusively ac-
count for experts’ existing workflows. With the growing popularity
of data science libraries and toolkits, urban experts are increasingly
adopting them into their practice. In turn, they are becoming more
aware (and proficient) of approaches that require computer science
expertise. For example, in climate science, computational note-
books are becoming increasingly used for data exploration, despite
their well-known limitations [30]. In our projects, we invested sig-
nificant effort in understanding these notebooks and transforming
them into components better suited to our visualization objectives –
ultimately replacing them with bespoke tools. Rather than replacing
these workflows, we see an opportunity for new approaches that can
bridge the gap between diverse data sources, analytical approaches,
and interactive environments. Such an approach would preserve the
familiarity of computational notebooks and also leverage visualiza-
tion strengths to create more robust and scalable tools.

Lastly, building on the previous points, we see a significant op-
portunity to facilitate collaborative efforts across domains. In par-
ticular, fostering collaborative approaches that leverage interoper-
ability and new interactive environments could lower the barrier to
the iterative design of urban computing dataflows. In such a sce-
nario, changes made by experts in any component of a dataflow
could be easily propagated to subsequent stages of the pipeline,
avoiding the need for re-design and re-implementation efforts.

Acknowledgments
This study was supported by NASA (#80NSSC22K1683),
NSF (#2320261, #2330565, #2411223, #2139316, #2230772),
IDOT (TS-22-340), CNPq (316963/2021-6, 311425/2023-2), and
FAPERJ (E-26/202.915/2019, E-26/211.134/2019).



References

[1] M. Aqib, R. Mehmood, A. Alzahrani, and I. Katib. A Smart Disaster
Management System for Future Cities Using Deep Learning, GPUs,
and In-Memory Computing, pp. 159–184. Springer International Pub-
lishing, 2020.

[2] L. Barbosa, K. Pham, C. Silva, M. R. Vieira, and J. Freire. Structured
open urban data: Understanding the landscape. Big Data, 2(3):144–
154, 2014. PMID: 25276498.

[3] J. P. Bello, C. Silva, O. Nov, R. L. Dubois, A. Arora, J. Salamon,
C. Mydlarz, and H. Doraiswamy. SONYC: a system for monitor-
ing, analyzing, and mitigating urban noise pollution. Commun. ACM,
62(2):68–77, 2019.

[4] F. Biljecki, L. Z. X. Chew, N. Milojevic-Dupont, and F. Creutzig.
Open government geospatial data on buildings for planning sustain-
able and resilient cities. Arxiv, 2021.

[5] P. A. Boda, F. Fusi, F. Miranda, et al. Environmental justice through
community-policy participatory partnerships. Journal of Environmen-
tal Protection, 14:616–636, 2023.

[6] S. Bonadia, R. Gama, D. de Oliveira, F. Miranda, and M. Lage. Visual
analytics using heterogeneous urban data. In 2023 36th SIBGRAPI
Conference on Graphics, Patterns and Images, pp. 1–6, 2023.

[7] S. Castelo, R. Rampin, A. Santos, A. Bessa, F. Chirigati, and J. Freire.
Auctus: a dataset search engine for data discovery and augmentation.
Proc. VLDB Endow., 14(12):2791–2794, 2021.

[8] C. Catlett, T. Malik, B. Goldstein, et al. Plenario: An open data dis-
covery and exploration platform for urban science. IEEE Data Eng.
Bull., 37(4):27–42, 2014.

[9] K. Chan, D. N. Schillereff, A. C. Baas, M. A. Chadwick, B. Main,
M. Mulligan, F. T. O’Shea, R. Pearce, T. E. Smith, A. van Soesber-
gen, E. Tebbs, and J. Thompson. Low-cost electronic sensors for en-
vironmental research: Pitfalls and opportunities. Progress in Physical
Geography: Earth and Environment, 45(3):305–338, 2021.

[10] F. Chirigati, H. Doraiswamy, T. Damoulas, and J. Freire. Data
polygamy: The many-many relationships among urban spatio-
temporal data sets. In Proc. of the 2016 International Conference on
Management of Data, SIGMOD ’16, p. 1011–1025, 2016.

[11] M. I. G. Daepp, A. Cabral, T. M. Werner, R. Mansour, C. Catlett,
A. Roseway, C. Needham, N. Udeagbala, and S. Counts. The “three-
legged stool”: Designing for equitable city, community, and research
partnerships in urban environmental sensing. In Proc. of the 2023 CHI
Conference on Human Factors in Computing Systems, CHI ’23, 2023.

[12] C. V. F. de Souza, S. M. Bonnet, D. de Oliveira, M. Cataldi, F. Mi-
randa, and M. Lage. Prowis: A visual approach for building, man-
aging, and analyzing weather simulation ensembles at runtime. IEEE
Trans. Vis. Comput. Graph., 30(1):738–747, 2024.

[13] C. V. F. de Souza, P. da Cunha Luz Barcellos, L. Crissaff, M. Cataldi,
F. Miranda, and M. Lage. Visualizing simulation ensembles of ex-
treme weather events. Computers & Graphics, 104:162–172, 2022.

[14] Z. Deng, D. Weng, S. Liu, Y. Tian, M. Xu, and Y. Wu. A survey of
urban visual analytics: Advances and future directions. Comp. Visual
Media, 9:3–39, 2023.

[15] H. Doraiswamy, N. Ferreira, T. Damoulas, J. Freire, and C. T. Silva.
Using topological analysis to support event-guided exploration in ur-
ban data. IEEE Trans. Vis. Comput. Graph., 20(12):2634–2643, 2014.

[16] H. Doraiswamy, E. T. Zacharatou, F. Miranda, M. Lage, A. Aila-
maki, C. T. Silva, and J. Freire. Interactive visual exploration of
spatio-temporal urban data sets using urbane. In Proc. of the 2018
International Conference on Management of Data, SIGMOD ’18, p.
1693–1696, 2018.

[17] L. Ferreira, G. Moreira, M. Hosseini, M. Lage, N. Ferreira, and F. Mi-
randa. Assessing the landscape of toolkits, frameworks, and authoring
tools for urban visual analytics systems. Computers & Graphics, p.
104013, 2024.

[18] R. Gardner-Frolick, D. Boyd, and A. Giang. Selecting data analytic
and modeling methods to support air pollution and environmental jus-
tice investigations: A critical review and guidance framework. Envi-
ronmental Science & Technology, 56(5):2843–2860, 2022.

[19] M. Hosseini, A. Sevtsuk, F. Miranda, R. M. Cesar, and C. T. Silva.
Mapping the walk: A scalable computer vision approach for generat-

ing sidewalk network datasets from aerial imagery. Computers, Envi-
ronment and Urban Systems, 101:101950, 2023.

[20] B. Huang and J. Wang. Big spatial data for urban and environmental
sustainability. Geo-spatial Information Science, 23(2):125–140, 2020.

[21] T. Kindberg, M. Chalmers, and E. Paulos. Guest editors’ introduction:
Urban computing. IEEE Pervasive Computing, 6(3):18–20, 2007.

[22] Y. Lyu, H. Lu, M. K. Lee, G. Schmitt, and B. Y. Lim. IF-City: Intel-
ligible fair city planning to measure, explain and mitigate inequality.
IEEE Trans. Vis. Comput. Graph., 30(7):3749–3766, 2024.

[23] F. Miranda, H. Doraiswamy, M. Lage, L. Wilson, M. Hsieh, and C. T.
Silva. Shadow Accrual Maps: Efficient accumulation of city-scale
shadows over time. IEEE Trans. Vis. Comput. Graph., 25(3):1559–
1574, 2019.

[24] F. Miranda, H. Doraiswamy, M. Lage, K. Zhao, B. Gonçalves, L. Wil-
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