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Figure 1: Snapshot of the HydroVis dashboard visualizing the forecast for Streamflow i.e., amount of water flowing per unit time,
and corresponding uncertainties, in the river system of Florida during hurricane Ian, Sept-Oct 2022

ABSTRACT

Freshwater floods during hurricanes are known to cause significant
damage to life and property. We could be better prepared to prevent
these losses if flood forecasts can be made accurately and under-
stood effectively. In addition to the technical complexities when
modeling freshwater systems, forecasting freshwater floods also in-
volves numerous uncertainties which also need to be considered to
make reliable data driven decisions. In this demo, we describe the
design and implementation of HydroVis–a decision support system
designed to help both weather scientists to triage the flood fore-
casting models, and the policymakers to help them understand the
forecasts effectively and make informed decisions accordingly.
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1 INTRODUCTION

Forecasts for weather events play a significant role in planning daily
activities both at the personal and the community level. One such
weather event is freshwater flooding due to hurricanes, which have
the potential to disrupt infrastructure and damage lives [3].

Forecasting weather events is difficult because of our limita-
tions in comprehensively modeling Earth system variables like
wind speed, precipitation and temperature. This, coupled with the
internal biases and approximation errors of the forecasting mod-
els, means that there are significant uncertainties associated with
weather forecasts.

In this demo, we present HydroVis – a decision support system
to understand freshwater flood forecasts, along with the associated
uncertainties. We designed HydroVis to serve both the weather sci-
entists, to help them triage the performance of weather models, and
the policy makers, to help them understand the forecasts with the
associated uncertainties and make informed decisions accordingly.

The contribution of this demo is not the actual modeling of fresh-
water floods, but providing an easy interface to access, understand
and communicate that information. HydroVis was prototyped at
the National Center for Atmospheric Research (NCAR) where the
WRF-Hydro model [1] is used along with the Data Assimilation
Research Testbed (DART) [2] for flood forecasting.



2 BACKGROUND

We briefly cover some background details required to understand
the forecasting process and the design of HydroVis.

Chaotic Systems are governed by deterministic laws of
physics, but are difficult to model because of their highly sensi-
tive nature towards minor variations in the initialization values of
the model. The Earth weather system is one example. Even small
differences in the initialization of the model, along with the internal
biases of the model, can build up over time and result in estimates
which are significantly different from the real-life observed state of
the system.

Ensemble Forecasts are one way of handling chaotic sys-
tems. The idea is to use multiple models instead of a single model,
to estimate the next state of the system. Each model in the ensem-
ble is initialized differently to account for the chaotic nature of the
system. If all the ensemble models reach the same state at a fu-
ture time step, we can be more certain of the estimate, otherwise,
we get a range of possible next states of the system, along with the
corresponding uncertainties.

Data Assimilation (DA) combines multiple sources of infor-
mation of a system, with a model of the system, to course correct
the model, and improve the accuracy of the model estimates. In
the context of predicting freshwater floods, we combine ensemble
model forecasts of the water flow or water level in river systems,
with corresponding real-life observations, to get refined forecasts
known as analysis.

Sources of uncertainty In the ensemble data assimilation
process, there are 4 sources of uncertainty.

• Initial state uncertainty because of the different initialization
values for each ensemble model to account for the chaotic
nature of the system,

• Model prediction uncertainty due to the inherent biases/errors
of the model,

• Observation uncertainty due to the errors in the measuring
instrument used to record real-life observations, and

• Inflation uncertainty or spread applied artificially to the vari-
able being estimated. It helps mitigate the tendency of ensem-
bles to underestimate uncertainty, particularly in the presence
of model and sampling errors. Without the use of inflation,
there is a risk of the ensemble collapsing to a single member,
effectively rendering the ensemble DA process ineffective.

We extend prior work on decision support systems implemented
for understanding oceanic system forecasts [4, 5], and implement it
in the domain of freshwater floods.

3 DESIGN & IMPLEMENTATION

HydroVis 1 is designed as a web app using Python-Flask frame-
work for the web server, and D3.js for the front-end. Figure 1 and
Figure 2 show snapshots of the dashboard. It has the following 4
interactive visualizations:

A The map visualization shows the geographical context and has
options to visualize the streamflow i.e., the amount of water
flowing per unit time, or the bucket value i.e., the water level
in the river system, along with the observation gauge locations
(red circles). This visualization can also be configured to show
the Model prediction uncertainty.

1Walkthrough video: https://youtu.be/hqkGGSkeyeI
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Figure 2: Snapshot of the HydroVis dashboard visualizing the fore-
cast for Streamflow i.e., amount of water flowing per unit time, and
corresponding uncertainties, in the river system of West Virginia, dur-
ing the flash floods in June 2016

B A line chart or hydrograph which shows the forecast, obser-
vation and analysis values over time, with the corresponding
uncertainties except for observation uncertainty. This chart con-
veys the Model prediction uncertainty through error bands en-
coding the standard deviation.

C A line chart or hydrograph which shows the inflation amount
applied to both the forecast and analysis values. This plot
specifically conveys the Inflation uncertainty.

D Histogram showing the distribution of forecast and analysis val-
ues of the individual models in the ensemble. This plot shows
how much individual models have/have not drifted away from
each other and thus convey both the Model prediction uncer-
tainty and the Initial state uncertainty propagated over time. It
also conveys the difference between the forecast and analysis
value distributions thus helping users evaluate the efficacy of
the data assimilation process.

The visualization controls (E) allow users to visualize different
variables (streamflow or bucket), with different aggregations (mean,
standard deviation or individual model estimates), different data
assimilation phases (forecast, analysis or the difference between
them i.e., increment), and the inflation applied to them. Observa-
tion gauge locations can also be visualized using a toggle switch,
and the time slider can be used to investigate the forecasts at any
timestamp of choice. All the visualizations in the dashboard are
cross-linked, and the map visualization supports direct manipula-
tion to select and investigate in detail, any river segment of choice.
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